

WELCOME CLASS 10TH (SCIENCE) Quadratic Equations Quadratic Formula

Objectives

Students will be able to: Solve quadratic equations using completing square method

Quadratic Formula: Derivation of quadratic formula by using completing square method.

ax² + bx + c = 0, a $\neq 0$ Dividing each term of the equation by a, we get $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}$ The quadratic equation in standard form is or $\left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2}$ $x^2 + \frac{b}{c}x + \frac{c}{c} = 0$ $\frac{\text{Taking square}}{\sqrt{\left(x + \frac{b}{2a}\right)^2}} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$ Taking square root of both sides, we get Shifting constant term $\frac{c}{a}$ to the right, we have $x^2 + \frac{b}{-}x = -\frac{c}{-}$ or $x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \Rightarrow x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Adding $\left(\frac{b}{a}\right)^2$ on both sides, we obtain Thus, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ is known as "quadratic formula". $x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a}$

Question no 1

$$2-x^{2} = 7x$$

$$2-x^{2} = 7x$$

$$1x^{2} + 7x - 2 = 0$$

$$ax^{2} + bx + c = 0$$

$$a = 1 \quad b = 7 \quad c = -2$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-(7) \pm \sqrt{(7)^2 - 4(1)(-2)}}{2(1)}$$
$$x = \frac{-7 \pm \sqrt{49 + 8}}{2}$$
$$x = \frac{-7 \pm \sqrt{57}}{2}$$
S.Set = $\left\{\frac{-7 \pm \sqrt{57}}{2}\right\}$

(vii)
$$\frac{3}{x-6} - \frac{4}{x-5} = 1$$

Solution:
 $\frac{3}{x-6} - \frac{4}{x-5} = 1$
 $\frac{3(x-5) - 4(x-6)}{(x-6)(x-5)} = 1$
 $3x - 15 - 4x + 24 = (x-6)(x-5)$
 $-x + 9 = x^2 - 11x + 30$
 $x^2 - 11x + x + 30 - 9 = 0$
 $x^2 - 10x + 21 = 0$
Here $a = 1, b = -10, c = 21$

Now
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(21)}}{2(3)}$
 $x = \frac{10 \pm \sqrt{100 - 84}}{2}$
 $x = \frac{10 \pm \sqrt{16}}{2}$
 $x = \frac{-8 \pm 4}{2}$
 $x = \frac{10 + 4}{2}$ $x = \frac{10 - 4}{2}$
 $x = \frac{14}{2}$ $x = \frac{6}{2}$
 $x = 7$ $x = 3$
Thus, solution set = {3,7}

Plenary

Q. Solve using quadratic formula $6x^2 - 3 - 7x = 0$

Solution

(v) $6x^2 - 3 - 7x = 0$ Solution: $6x^2 - 3 - 7x = 0$ $6x^2 - 7x - 3 = 0$ Compare it with, we have $ax^2 + bx + c = 0$ a = 6, b = -7, c = -3Here $-b \pm \sqrt{b^2 - 4ac}$ Now 28 é? $(-7)^2 - 4(6)(-3)$ $\mathbf{x} =$ 2(6) $7 \pm \sqrt{49} + 72$ x =12

$$x = \frac{7 \pm \sqrt{121}}{12}$$

$$x = \frac{7 \pm 11}{12}$$

$$x = \frac{18}{12}$$

$$x = \frac{1}{12}$$

Thus, solution set =
$$\left\{-\frac{1}{3}, \frac{3}{2}\right\}$$

Ex 1.2 Remaining parts