

WELCOME CLASS 10TH (SCIENCE) Theory of Quadratic Equations

Students will be able to: Find discriminant and check the nature of roots

2.1.1 Discriminant $(b^2 - 4ac)$ of the quadratic expression $ax^2 + bx + c$. We know that two roots of the equation $ax^2 + bx + c = 0$, $a \neq 0$ (i) are $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$. The restrict of the equation is the set of the equation is $\frac{w^2}{2} = 4ac^2$.

The nature of these roots depends on the value of the expression " $b^2 - 4ac$ " which is called the "discriminant" of the quadratic equation (i) or the quadratic expression $ax^2 + bx + c$,

2.1.2 To find the discriminant of a given quadratic equation.

We explain the procedure to find the discriminant of a given quadratic equation through the following example:

Example 1: Find the discriminant of the following equations.

(a) $2x^2 - 7x + 1 = 0$ (b) $x^2 - 3x + 3 = 0$ Solution: (a) $2x^2 - 7x + 1 = 0$ Here a = 2, b = -7, c = 1Disc. $= b^2 - 4ac$ $= (-7)^2 - 4(2)(1)$ = 49 - 8 = 41(b) $x^2 - 3x + 3 = 0$ Here a = 1, b = -3, c = 3Disc. $= b^2 - 4ac$ $= (-3)^2 - 4(1)(3)$ = 9 - 12 = -3

2.1.3 Nature of the roots of a quadratic equation through discriminant.

The roots of the quadratic equation $ax^2 + bx + c = 0$, $(a \neq 0)$ are $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ and its discriminant is $b^2 - 4ac$.

When a, b and c are rational numbers.

(i) If $b^2 - 4ac > 0$ and is a perfect square, then the roots are rational (real) and unequal.

- (ii) If $b^2 4ae > 0$ and is not a perfect square, then the roots are irrational (real) and unequal.
- (iii) If $b^2 4ac = 0$, then the roots are rational (real) and equal.
- (iv) If $b^2 4ac < 0$, then the roots are imaginary (complex conjugates).

1. Find the discriminant of the following given quadratic equation:

(*i*) $2x^2 + 3x - 1 = 0$ Solution: $2x^2 + 3x - 1 = 0$ Compare it with $ax^2 + bx + c = 0$ *Here* a = 2, b = 3, c = -1Disc. $=b^2-4ac$ $=(3)^{2}-4(2)(-1)$ =9+8=17

(*iv*)
$$4x^2 - 7x - 2 = 0$$

Solution:
 $4x^2 - 7x - 2 = 0$
Compare it with
 $ax^2 + bx + c = 0$
Here $a = 4, b = -7, c = -2$
Disc. $= b^2 - 4ac$
 $= (-7)^2 - 4(4)(-2)$
 $= 49 + 32$
 $= 81$

Find the nature of the roots of the following given quadratic equations and verify the result by solving the equations:

(*i*) $x^2 - 23x + 120 = 0$ Solution : $x^{2} - 23x + 120 = 0$ Compare it with $ax^2 + bx + c = 0$ *Here* a = 1, b = -23, c = 120Disc. $=b^2-4ac$ $=(-23)^2-4(1)(120)$ = 529 - 480= 49 $=(7)^2 > 0$

As the disc. is positive and is a perect square.

The roots are rational (real) and unequal

Verification

$$x^{2}-23x+120 = 0$$

$$x^{2}-15x-8x+120 = 0$$

$$x(x-15)-8(x-15) = 0$$

$$(x-8)(x-15) = 0$$
Either $x-8 = 0$ *or* $x-15 = 0$

$$x = 8$$
 $x = 15$
Thus, the roots are rational (real) and unequal

(*iii*)
$$16x^2 - 24x + 9 = 0$$

Solution:
 $16x^2 - 24x + 9 = 0$
Compare it with
 $ax^2 + bx + c = 0$
Here $a = 16, b = -24, c = 9$
Disc. $= b^2 - 4ac$
 $= (-24)^2 - 4(16)(9)$
 $= 576 - 576$
 $= 0$

As the disc. is zero.

Thereor the roots are real and equal.

Verification $16x^2 - 24x + 9 = 0$ Using quadratic formula $-b\pm\sqrt{b^2-4ac}$ x=-4(16)(9-24): 2(16) $24 \pm \sqrt{576 - 576}$ 32 24±√ 32 32 Thus, the roots are real and equal.

Activity

Q. Find the nature of the roots of the following given quadratic equations and verify the result by solving the equations:

 $3x^2 + 7x - 13 = 0$

Solution

 $3x^{2} + 7x - 13 = 0$ Compare it with $ax^{2} + bx + c = 0$ Here a = 3, b = 7, c = -13Disc. $= b^{2} - 4ac$ $= (7)^{2} - 4(3)(-13)$ = 49 + 156= 205 > 0

As the disc. is positive and not a perfect square. Thereor the roots are irrational (*real*) and equal.

Verification $3x^2 + 7x - 13 = 0$ Using quadratic formula $-b\pm\sqrt{b^2-4ac}$ $-7\pm\sqrt{(7)^2-4(3)(-13)}$ $-7 \pm \sqrt{49 + 156}$ 7±√205

Thus, the roots are irrational (real) and unequal.

Ex 2.1 Remaining parts