

# WELCOME CLASS 10<sup>TH</sup> (SCIENCE) Quadratic Equations

## Objectives

Students will be able to:

Solve equations which are convertible to quadratic equations

#### 1.4 Equations reducible to quadratic form

We now discuss different types of equations, which can be reduced to a quadratic equation by some proper substitution.

Type (i) The equations of the type 
$$ax^4 + bx^2 + c = 0$$

Replacing  $x^2 = y$  in equation  $ax^4 + bx^2 + c = 0$ , we get a quadratic equation in y.

Example 15 Solve the equation  $x^4 - 13x^2 + 36 = 0$ .

Solution: 
$$x^4 - 13x^2 + 36 = 0$$
 (i)  
Let  $x^2 = y$ . Then  $x^4 = y^2$ 

Equation (i) becomes

$$y^2 - 13y + 36 = 0$$
 which can be factorized as

$$y^2 - 9y - 4y + 36 = 0$$

$$y(y-9)-4(y-9)=0$$

$$(y-9)(y-4)=0$$

Either 
$$y-9=0$$
 or  $y-4=0$ , that is,

$$y = 9$$
 or  $y = 4$ 

Put 
$$y = x^2$$

$$x^2 = 9$$
 or  $x^2 = 4$ 

$$\Rightarrow$$
  $x = \pm 3$  or  $x = \pm 2$ 

The solution set is 
$$\{\pm 2, \pm 3\}$$

#### Q. Solve the following equations

(1) 
$$2x^4 - 11x^2 + 5 = 0$$
  
Solution:  $2x^4 - 11x^2 + 5 = 0$   
Let  $x^2 = y \Rightarrow (x^2)^2 = y^2$   
 $x^4 = y^2$   
Put  $x^2 = y$  and  $x^4 = y^2$   
 $2x^4 - 11x^2 + 5 = 0$   
 $2y^2 - 11y + 5 = 0$   
 $2y^2 - 10y - y + 5 = 0$   
 $2y(y - 5) - 1(y - 5)$   
 $(y - 5)(2y - 1)$   
 $y - 5 = 0$  or  $2y - 1 = 0$ 

$$y = 5 or 2y = 1$$

$$y = 5 or y = \frac{1}{2}$$

$$Put in x^2 = y$$

$$x^2 = 5 or x^2 = \frac{1}{2}$$

$$\sqrt{x^2} = \pm \sqrt{5} \sqrt{x^2} = \pm \sqrt{\frac{1}{2}}$$

$$x = \pm \sqrt{5} x = \pm \frac{1}{\sqrt{2}}$$

$$Solution Set is \left\{ \pm \frac{1}{\sqrt{2}}, \pm \sqrt{5} \right\}$$

$$(5) \ 3x^{-2} + 5 = 8x^{-1}$$

Solution: 
$$3x^{-2} + 5 = 8x^{-1}$$
....(1)

$$x^{-1} = y$$
  $x^{-2} = y^2$  .....(2)

Put 
$$x^{-1} = y$$
 and  $x^{-2} = y^2$  in eq (1)

$$3y^2 + 5 = 8y$$

$$3y^2 - 8y + 5 = 0$$

$$3y^2 - 3y - 5y + 5 = 0$$

$$3y(y-1)-5(y-1)=0$$

$$(3y-5)(y-1)=0$$

$$3y-5=0$$
  $y-1=0$ 

$$3y = 5 \qquad \qquad y = 1$$

$$y = \frac{5}{3} \qquad y = 1$$

*From eq* (2) *put*  $y = x^{-1}$ 

$$x^{-1} = \frac{5}{3} \qquad x^{-1} = 1$$

$$\frac{1}{x} = \frac{5}{3} \qquad \qquad \frac{1}{x} = 1$$

$$x = \frac{3}{5} \qquad x = 1$$

$$S.Set = \begin{cases} 3 \\ 5 \end{cases}, 1$$

## Plenary

Q. Solve the following equation

$$2x^4 = 9x^2 - 4$$

### Solution

$$2x^4 = 9x^2 - 4$$

Solution: 
$$2x^4 = 9x^2 - 4$$

$$2x^4 - 9x^2 + 4 = 0$$
 .....(1)

Let 
$$x^2 = y$$
 .....(2)

Taking square on both sides

$$\left(x^2\right)^2 = y^2$$

$$x^4 = y^2$$

Put 
$$x^2 = y$$
 and  $x^4 = y^2$  in eq(1)

$$2y^2 - 9y + 4 = 0$$

$$2y^2 - 8y - 1y + 4 = 0$$

$$2y(y-4)-1(y-4)=0$$

$$(y-4)(2y-1)=0$$

$$y-4=0$$
  $2y-1=0$ 

$$y = 4 \qquad 2y = 1$$

$$y = 4 \qquad \qquad y = \frac{1}{2}$$

Put 
$$y = x^2$$

$$x^2 = 4 \qquad \qquad x^2 = \frac{1}{2}$$

$$\sqrt{x^2} = \pm \sqrt{4} \qquad \sqrt{x^2} = \sqrt{\frac{1}{2}}$$

$$x = \pm 2 \qquad \qquad x = \pm \frac{1}{\sqrt{2}}$$

Solution set is 
$$\left\{\pm 2, \pm \frac{1}{\sqrt{2}}\right\}$$

## Homework

Ex 1.3 Remaining parts