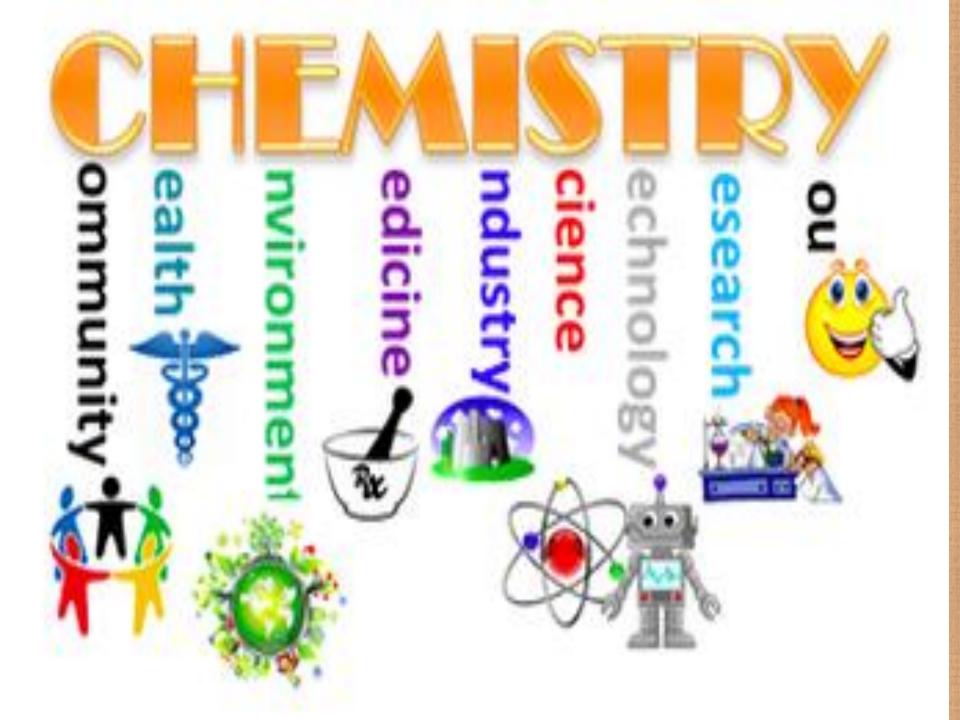


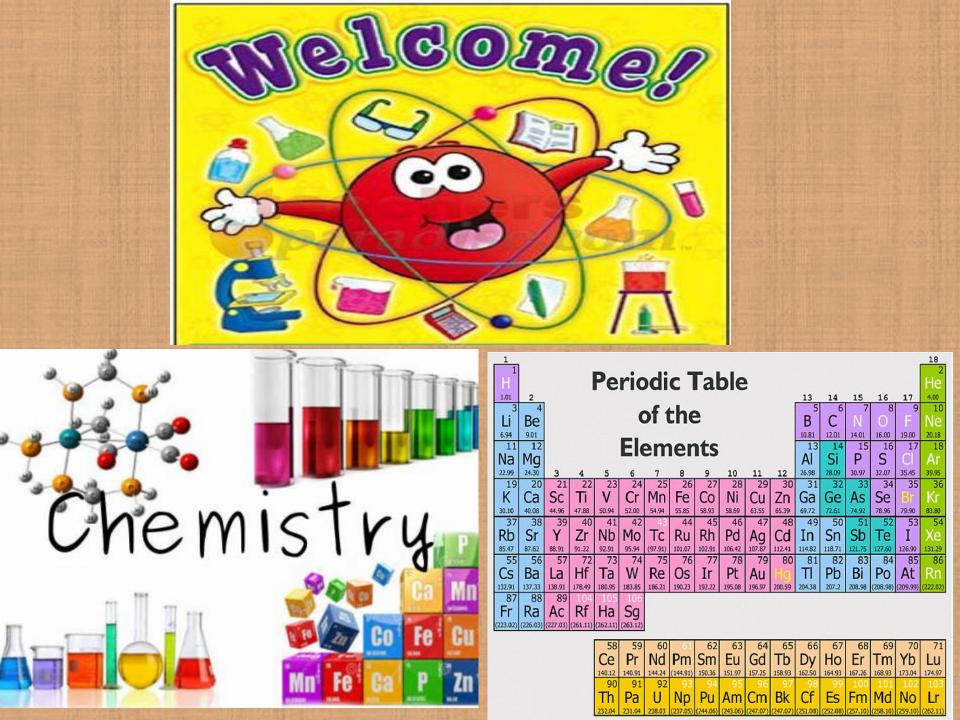
Pakistan School Kingdom of Bahrain

Grade :10th Subject: Chemistry

Welcome to E-Learning

Imaan Boosters


Rabbi zidnî 'ilmã


رَبِّ زِدْنِي عِلْمًا

O my Lord! Advance me in Knowledge

[Qur'an, 20:114]

#seekingknowledge

Virtual Classroom Rules

Select a quiet place to study.

Be on time.

Come to e way to lea

Come to class prepared in every way to learn and participate.

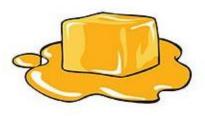
Virtual Classroom Rules

Be respectful.

Listen to & follow directions.

Turn off your video before joining the class.

I hope you will follow all the above mentioned rules to make your dear teacher happy.

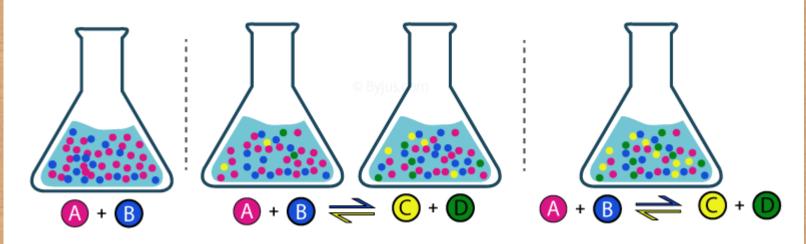

Are these reversible changes? TTYP:Why not?



Burning wood Reversible / Irreversible

Melted butter Reversible / Irreversible

en we can't easily change the substan


Breaking an egg Reversible / Irreversible

Chopping a tomato Reversible / Irreversible

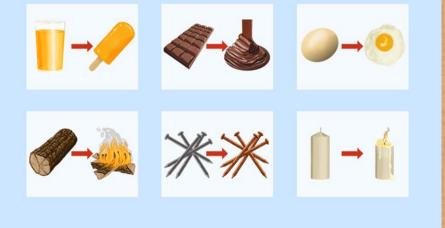
Chemical Equilibrium

CHEMICAL EQUILIBRIUM

© Byjus.com

Lesson Objectives:

By the end of this lesson, students will be able to:
Write both the forward & reverse reactions.
Write the equilibrium constant expression of a reaction.


Determine the units for equilibrium constant .

General Chemical Reaction

COMPLETE / IRREVERSIBLE REACTION :

A complete reaction is one in which all reactants have been converted to products.

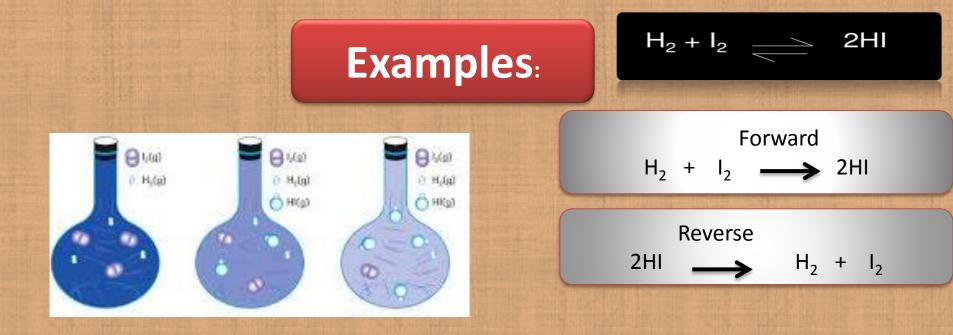
Reversible and Irreversible Changes

(a)
$$H_2 + I_2 \longrightarrow 2HI$$

(b) $H_2SO_4 + Ba(OH)_2 \longrightarrow BaSO_4 + 2H_2O$
(c) $NaCl + AgNO_3 \longrightarrow NaNO_3 + AgCl$
(d) $Fe + S \longrightarrow FeS$

Characteristics of irreversible reaction:

- Proceed in one direction(unidirectional) from left to right.
- Represented by single arrow()
- These reactions are complete reactions. Or they go to completion.
- There is not equilibrium phenomenon.
- They are generally fast reactions.


REVERSIBLE REACTION :

 $H_2 + I_2 =$ \ge 2HI

 A reaction in which the products can react together to re-form the original reactants is called reversible reaction.

Characteristics of Reversible reaction:

- Reversible reactions never go to completion .All reversible changes (physical and chemical)
- Occur simultaneously in both the directions.
- Left to right=Forward
- Right to left=Reverse
- Notation of reversible reaction:
- The double arrow (_____) in the chemical equation shows that the reaction is reversible

Vapor Pressure and Dynamic Equilibrium

Vapor Pressure

 of a liquid is
 the partial
 pressure of its
 vapor in
 dynamic
 equilibrium
 with its liquid.

 Evaporation begins to occur.
 Evaporation continues, but condensation also begins to occur.
 Dynamic equilibrium: rate of evaporation = rate of condensation

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

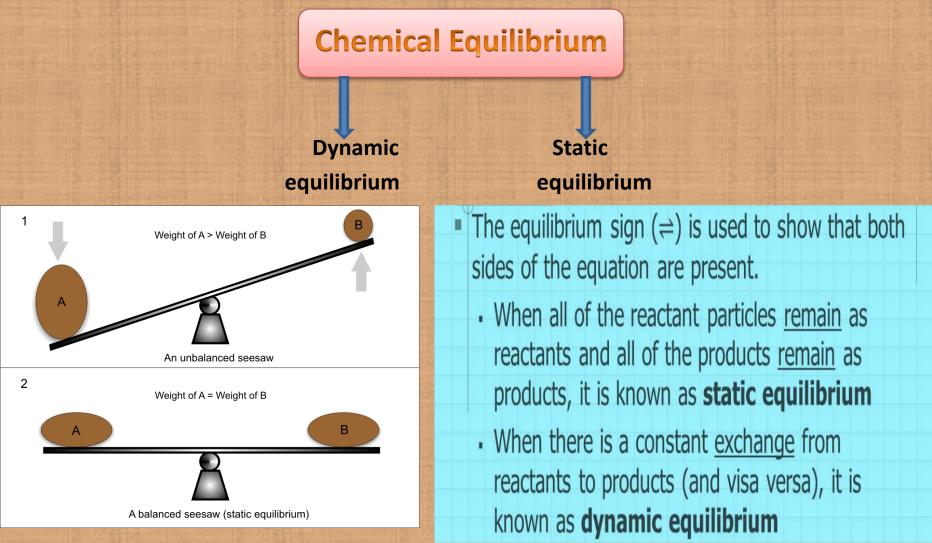
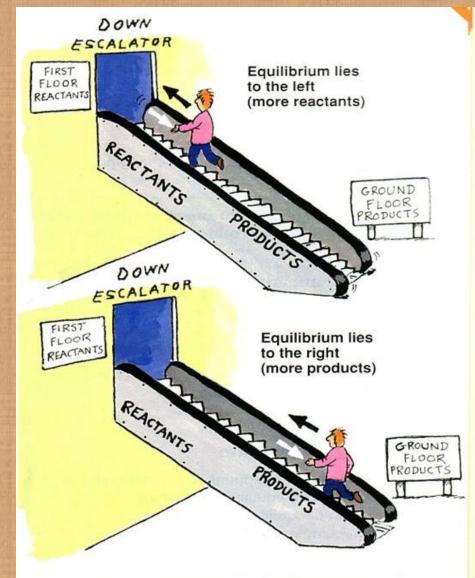

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.
 Image: Condensation also begins to occur.

 Image: Condensation also begins to occur.
 Image: Condensation also begi

Chemical Equilibrium

A state of a chemical reaction in which forward and reverse reactions take place at the same rate is called "chemical equilibrium".

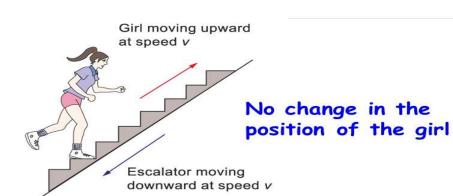


Dynamic & static equilibrium

➢ examples

Dynamic Equilibrium: is the steady state of a reversible reaction where the rate of the forward reaction is the same as the reaction rate in the backward direction.

Static Equilibrium: Static equilibrium, also known as mechanical equilibrium, means the reaction has stopped. In other words, the system is at rest.



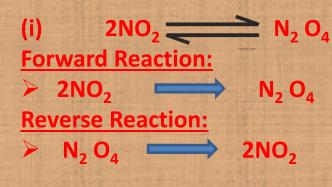
The man running up the 'down-escalator' can appear to be still on any part of the staircase

- Dynamic Equilibrium:
 - Child ascending escalator at the same rate the escalator descends.
 - At the balance point (the equilibrium position), the child and escalator are moving at the same rate in opposite directions.

- Static Equilibrium:
 - Children on see-saw.
 - At the balance point (the equilibrium position), there is no movement of the children or the see-saw (the opposing processes).

Dynamic Equilibrium

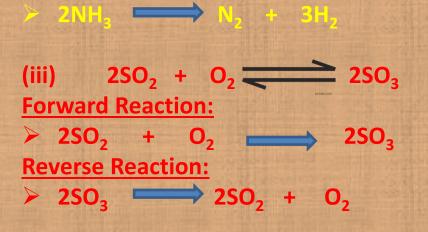
Examples of static equilibrium


Macroscopic characteristics of Dynamic Equilibrium

- 1. Macroscopic properties (e.g. colour, pressure, concentration, pH) are constant
 I.e. It <u>appears</u> as if nothing is changing
- 2. Can only be reached in a closed system
- 3. Forward rate = Reverse rate
- 4. Can be established from either direction

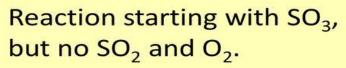
 $H_2 + I_2 \longrightarrow 2HI$

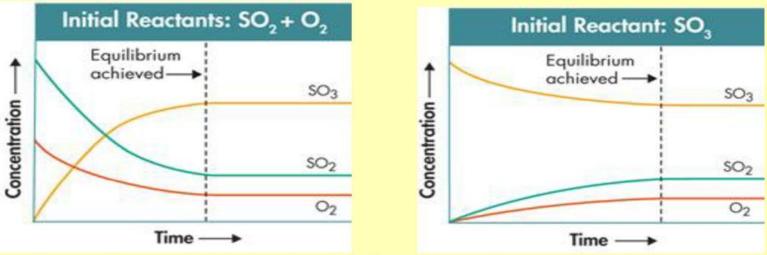
At equilibrium, the concentrations of all reactants and products will remain constant


Writing Forward and Reverse Reactions:

Forward Reaction:

Reverse Reaction:


(ii) $N_2 + 3H_2 = 2NH_3$



Explanation with Graph:

When the rates of the forward and reverse reactions are equal, the reaction has reached a state of balance called <u>chemical equilibrium</u>.

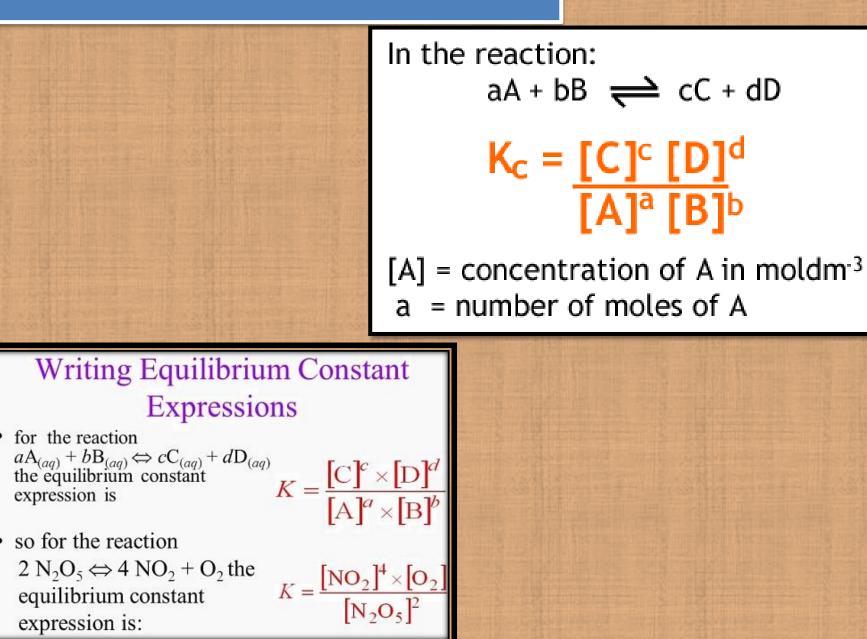
Reaction starting $SO_2 \& O_2$, but no SO_3 .

Eventually, the concentrations remain constant.

Law of Mass Action:

Introduction:

Two chemists C.M Gulberg and P. Waage in 1864 proposed the law of mass action to describe the equilibrium state.

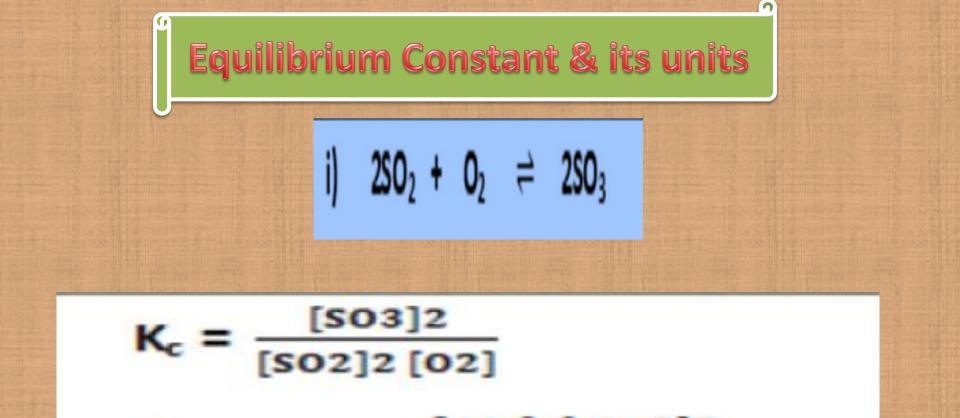

Statement:

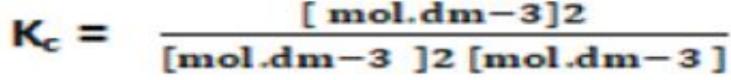
"It states that the rate at which a substance reacts is directly proportional to its active mass and the rate at which the reaction proceeds is directly proportional to the product of the active masses of the reactants."

Active Mass:

The term "Active Mass " represents the concentration of reactants and products in moles.dm⁻³ for a dilute solution, and is expressed in terms of square brackets [].

Equilibrium Constant Expression





Examples:

2SO2	+ O ₂	=	2SO3
N ₂	+ 3H ₂	=	2NH₃
2N2	+ O ₂	=	2NO2

$$K_{c} = \frac{[SO3]2}{[SO2]2 [O2]}$$
$$K_{c} = \frac{[NH3]2}{[N2] [H2]3}$$
$$K_{c} = \frac{[NO2]2}{[N2]2 [O2]}$$

i)
$$2SO_2 + O_2 \implies 2SO_3$$

Solution:-Kc = concentration of Products Concentration of Reactants $Kc = [SO_3]^2$ $[SQ]^{2}[Q]$ Concentrarion in mol dm⁻³ Kc = [mototm3] [mototm3] [motodm3] [mototm3][motodm3] $Kc = \frac{1}{md \cdot dm^3} = md \cdot dm^3$

$$Kc = mol^{-1}dm^3$$

$$K_{c} = \frac{[NH3]2}{[N2][H2]3}$$

$$K_{c} = \frac{[mol.dm-3]2}{[mol.dm-3][mol.dm-3]3}$$

$$K_{c} = \frac{[mol.dm-3]2}{[mol.dm-3][mol.dm-3]3}$$

$$II) N_1 + 3H_2 \rightarrow 2NH_3$$

Solution:-Kc = Concentration of Products Concentration of Reactants $K_{c} = \left[NH_{3} \right]^{2}$ $[N][H]^3$ Kc = [mol-dm³] [mol-dm³] [mol-dm³] [mol-dm³] [mol.dm³] [mol.dm³] $kc = \frac{1}{[mol.dm^3][mol.dm^3]}$ $Kc = \frac{1}{mol^2 dm^6}$ Kc = mol-2 dm

iii)
$$2N_2 + O_2 \neq 2NO_2$$

$$\lim 2N_2 + 0_2 \rightleftharpoons 2N0_2$$

Solution :-

$$Kc = \frac{\text{concentration of Products}}{\text{concentration of Reactants}}$$

$$Kc = \frac{[NQ]^2}{[N_2]^2 [O_2]}$$

$$Kc = \frac{[mot dm^3] [mol dm^3]}{[mol dm^3] [mol dm^3] [mol dm^3]}$$

$$Kc = \frac{1}{[mol dm^3]}$$

$$K_{c} = \frac{[NO2]2}{[N2]2[O2]}$$

$$K_{c} = \frac{[mol.dm-3]2}{[mol.dm-3]2[mol.dm-3]}$$

$$Kc = mol^{-1}.dm^{3}$$

Q:Bromine chloride (BrCl)decomposes to form chlorine and Bromine.For this reaction write: (i) Chemical equation (ii) K_c expression iii) Units of K_c

Plenary

Q: What happens when H₂ and I₂ gases are mixed in a sealed container?

Q: i) In an irreversible reaction equilibrium is: A) Established guickly B) Established slowly C) Never Established D) Established when reaction stops

Q: Choose reactant and product for this reaction.

 $2 \text{ N}_2 \text{O}_5 \Leftrightarrow 4 \text{ NO}_2 + \text{O}_2 \text{ the}$ equilibrium constant $K = \frac{[\text{NO}_2]^4 \times [\text{O}_2]}{[\text{N}_2 \text{O}_5]^2}$ expression is:

Q:What will be K_c units for this reaction?

Home Work

SOLVE:
Self Assessment Exercise.9.2
Self Assessment Exercise.9.3
Review Questions:3,4,5,6

