

Pakistan School Kingdom of Bahrain

Grade :10th Subject: Chemistry

Welcome to E-Learning

Imaan Boosters

Rabbi zidnî 'ilmã

رَبِّ زِدْنِي عِلْمًا

O my Lord! Advance me in Knowledge

[Qur'an, 20:114]

#seekingknowledge

Virtual Classroom Rules

Select a quiet place to study.

Be on time.

Come to e way to lea

Come to class prepared in every way to learn and participate.

Virtual Classroom Rules

Be respectful.

Listen to & follow directions.

Turn off your video before joining the class.

I hope you will follow all the above mentioned rules to make your dear teacher happy.

Lesson Objectives:

 By the end of this lesson, students will be able to: Write the equation for self-ionization of water. Classify a solution as neutral, acidic or basic. Complete and balance a neutralization reaction.

P^H and p^{OH}

• Introduction:

In 1909, the Danish biochemist Soren Sorenson proposed a convenient method to express such small concentration of H⁺ ions and OH⁻ ions by p^H and p^{OH}

P(is a German word= potex) potex means power or concentration.

- <u>p</u>^H
- " p^H is defined as the negative logarithm of the molar concentration of H⁺ ions in aqueous solutions".
- <u>р</u>он

P^H = -log [H⁺]

"P^{OH} is defined as the negative logarithm of the molar Concentration of OH⁻ ions in aqueous solution"

$$\mathbf{P}^{\mathbf{OH}} = -\mathbf{log} \left[\mathbf{OH}^{-}\right]$$

Self –ionization of water:

Water molecules are highly polar. Occasionally, the collisions between water molecules are energetic enough to transfer a proton from one water molecule to another.

- A water molecule that donates or loses a proton becomes a negatively charged hydroxide ion OH⁻. The other water molecule which gains or accepts the proton becomes positively charged hydronium ion, H₃O⁺
- This reaction can be written as,

 $2H_2O \longrightarrow H_3O^+ + OH^-$

- The reaction in which two water molecules produce ions is called as the Self ionization or auto-ionization of water .This reaction can also be written as a simple ionization of water
- H_2O \longrightarrow H^+ + OH^-
- Water is a weak electrolyte. The self –ionization of water occurs to a very small extent. At 25 °C the experimentally determined concentrations of H⁺ ions and OH⁻ ions are as follows.

 $[H^+] = [OH^-] = 1 \times 10^{-7} M$

$\frac{Equilibrium Constant}{K_{c}} = \frac{[H^{+}][OH^{-}]}{[H_{2}O]}$

- Since, H₂O is a weak electrolyte, so the concentration of [H₂O] will remain constant.
- $K_c [H_2O] = [H^+] [OH^-]$
- K_w = [H⁺] [OH⁻]
- Where K_w = Kc [H₂O] is called lonization Constant for water. It is also called the ion product for water.
 - 1 (very low value) 10¹⁴
- Then: $H^+ = OH^-$

```
K_w = [H^+] [H^+] = 10^{-14}
```

```
[H^+]^2 = 10^{-14}
```

```
Taking root on both sides; we get
```

 $[H^+] = 10^{-7}$ (at 25 °C)

$$K_{w} - \text{Ionization Constant for Water}$$

$$In pure water at 25 °C:$$

$$[H_{3}O^{+}] = 1 \times 10^{-7} \text{ mol/L}$$

$$[OH^{-}] = 1 \times 10^{-7} \text{ mol/L}$$

$$K_{w} \text{ is a constant at 25 °C:}$$

$$Kw = [H_{3}O^{+}][OH^{-}]$$

$$Kw = (1 \times 10^{-7})(1 \times 10^{-7}) = 1 \times 10^{-14}$$

 $[H^+] = 10^{-7}$ (at 25 °C):

Here -7 =low value, to deal with this –ve value we will use numeric system to convert –ve value into +ve value.

To take -log

So

$$P^{H} = -\log [H^{+}] \qquad P^{OH} = -\log [OH^{-}]$$

THE P^H SCALE:

Chemists use a number scale from 0 to 14 to describe the concentration of H⁺ ions in a solution is known as P^H Scale.

 $P^{H} = -\log [H^{+}] = -\log [1x10^{-14}] = 7$

P^{OH} = -log [OH⁻] = -log[1x10⁻¹⁴] = 7

So, its mean at 25 ^oC pure water is a weak acid. Because out of 10¹⁴ water molecule 1 will be ionized.

- P^H + P^{OH} = 7+7=14
- <u>Remember that:</u>
- If [H⁺] =[OH⁻]=1x10⁻⁷ Solution is neutral
- If [H⁺] > 1x10⁻⁷, Solution is acidic
- If [H⁺] < 1x10⁻⁷ Solution is basic

We now have the familiar pH scale (0-14): If pH = 7, the solution is neutral pH > 7, the solution is basic pH < 7, the solution is acidic

Self Assessment Exercise 10.3: Classify a solution as neutral, acidic or basic.

1) A soft drink has [H⁺] = 3x10⁻³ M.Is drink acidic, neutral or basic?

Data: Concentration of [H⁺] = 3x10⁻³

• <u>Solution:</u>

```
[H^+] = 3x10^{-3} > 1x10^{-7} M, The solution is acidic
```

RESULT:

If [H⁺] =[OH⁻]=1x10⁻⁷ Solution is neutral

If [H⁺] > 1x10⁻⁷ Solution is acidic

If [H⁺] < 1x10⁻⁷ Solution is basic

Because, $3x10^{-3}$ M > $1x10^{-7}$ M, The solution is acidic.

2) Ordinary vinegar is approximately 1M CH₃COOH.Concentration of H⁺ in it is 4.2x10⁻³ M.Is vinegar acidic ,basic or neutral? **Remember that:**

Data: Concentration of $[H^+] = 4.2 \times 10^{-3} M.$

[H⁺] =[OH⁻]=1x10⁻⁷ If Solution is neutral

If [H⁺] > 1x10⁻⁷ Solution is acidic

If $[H^+] < 1x10^{-7}$ Solution is basic

Solution:

 $[H^+] = 4.2 \times 10^{-3} > 1 \times 10^{-7} M$, The solution is acidic

RESULT:

Because , 4.2×10^{-3} M > 1×10^{-7} M ,The solution is acidic

3) A student determines the [OH⁻] of milk of magnesia, a suspension of solid magnesium hydroxide in its saturated solution & obtains a value of 4.2x10⁻³ M.Is the solution acidic, neutral or basic?

Data:

Concentration of [OH⁻] = 4.2x10⁻³ [H⁺] = ?

If $[OH^-]$ is given, calculate $[H^+]$ from $K_w = [H^+] [OH^-]$

Solution:

 $K_{w} = [H^{+}] [OH^{-}]$

By putting values:

 $[1.0x10^{-14}] = [H^+] [4.2x10^{-3}]$ $[H^+] = \underline{[1.0x10^{-14}]} = 0.2x10^{-11} M$ $[4.2x10^{-3}]$ $[H^+] = 0.2x10^{-11} < 1x10^{-7} M$, The solution is Basic.

RESULT:

Because, 0.2×10^{-11} M < 1×10^{-7} M, The solution is Basic

If [H⁺] < 1x10⁻⁷ Solution is basic

$K_{w} = [1.0 \times 10^{-14}]$

Definition:

An acid contains replaceable hydrogen atoms. When these are completely or partially replaced by metal atoms, a compound called salt is formed.

Properties of salt ➤ Salts are ionic	<u>s:</u> compounds.		NaCl	
Neutralization	n Reaction.		<u> </u>	
Cation & Anion.		e name of metal ion	The part showing which Acid was used	
Identify salt	Acid	Salt name	Example	
Hydrochio HCI		Chloride Cl ⁻	NaCl , KCl , CaCl ₂	
	Nitric HNO ₃	Nitrate Na NO ₃ ⁻¹	NaNO ₃ , KNO ₃ , Ca(NO ₃) ₂	
Sulphur H ₂ SO ₄		Sulphate SO ₄ - ²	Na ₂ SO ₄ , K ₂ SO ₄ , CaSO ₄	
	Phosphoric H ₃ PO ₄	Phosphate PO ₄ - ³	Na ₃ PO ₄ , K ₃ PO ₄ , Ca ₃ (PO ₄) ₂	

Methods for making Salts:

There are five methods for making Salts.

Salt Formulas					
cation	anion	compound			
Ca ⁺²	C1-1	CaCl ₂			
Ba ⁺²	0-2	BaO			
к+1	s ⁻²	K ₂ S			
Fe ⁺³	Br ⁻¹	FeBr3			
Cr+3	0-2	Formula ?			

Salt formation

Examples of salts

Salt	Formula	Metal ion	Non-metal ion
Copper sulphate	CuSO ₄	Cu ²⁺	SO 4 ²⁻
Sodium chloride	NaCl	Na⁺	Cl-
Potassium nitrate	KNO ₃	K⁺	NO ₃ -
Calcium sulphate	CaSO ₄	Ca ²⁺	SO 4 ²⁻

Q: Write balance chemical equations for the following:

(i) Sulphuric acid + Magnesium hydroxide	\longrightarrow	Magnesium sulphate + Water
(ii) Sulphuric acid + Sodium hydroxide –		Sodium sulphate + Water
(iii) Hydrochloric acid + Calcium hydroxide	\longrightarrow	Calcium chloride + Water

i.	$H_2SO_4 + Mg(OH)_2$	\longrightarrow	MgSO ₄ +	H ₂ O
ii.	H ₂ SO ₄ + 2NaOH	\longrightarrow	Na ₂ SO ₄ +	2H ₂ O
iii.	$2HCI + Ca (OH)_2$	\longrightarrow	CaCl ₂ +	2H ₂ O

Q: Complete and balance the following chemical reactions:

(i) H_2SO_4	+	CuO	\longrightarrow
(ii) HCl	+	CaCO ₃	\longrightarrow

(iii) AgNO₃ + NaCl

Ans:

i.	H ₂ SO ₄	+	CuO	\longrightarrow	$CuSO_4 + H_2O$
ii.	2HCl	+	CaCO ₃	\longrightarrow	$CaCl_2 + H_2O + CO_2$
iii.	AgNO ₃	+	NaCl		AgCl + NaNO ₃

Q: B (i) H (ii)	$H_2CO_3 + HNO_3 +$	e follo NaO Ba (1	OWING Cher H OH) ₂	mical re \rightarrow	eactions: Na ₂ CO ₃ Ba (NO ₃)	+ H ₂ O ₂ + H ₂ O		
(iii)	H ₃ PO ₄	+ Na	aOH —	\rightarrow	Na ₃ PO ₄	+ H ₂ O		
Ans	:							
(i)	H ₂ CO ₃	+ 2	NaOH		→	Na ₂ CO ₃	+ 2	H ₂ O
(ii)	2 HNO ₃	+	Ba (OH) ₂	_	→	Ba (NO	₃) ₂ +	<mark>2</mark> H ₂ O
(iii)	H ₃ PO ₄	+	3 NaOH	_	→	Na ₃ PO	4 +	3H ₂ O

Plenary

(i) A solution that has hydrogen ion concentration $1.0x10^{-3}$ M. (ii) A solution that has hydrogen ion concentration $1.0x10^{-10}$ M. (iii) A solution that has hydroxyl ion concentration $1.0x10^{-3}$ M. (iv) A solution that has hydroxyl ion concentration $1.0x10^{-3}$ M.

- An aqueous solution of NaOH is used as a drain cleaner .If the concentration of OH⁻ ions in the solution is 1.0x10⁻⁵ M, the concentration of H⁺ ions in it would be?
- A) 1.0x10⁻⁵M
 B) 1.0x10⁻⁷M
 C) 1.0x10⁻⁹M
 D) 1.0x10⁻¹⁴M
- Define P^H and p^{OH}

Home Work

G

SOLVE:
➢ Self Assessment Exercise.10.4
➢ Self Assessment Exercise.10.7
➢ Review Questions:16,17,18,19

