

SUBJECT : PHYSICS

ENGAGING STARTER

 Identify conductors and insulators from the given pictures.

*Thermal conductivity

TOPIC

OBJECTIVE ×At the end of this lesson students will be able to : **×**Enlist the factors effecting thermal conductivity **x**Solve the problems based on thermal conductivity of solid conductors.

Conduction of heat occurs at different rates in different

- materials. In metals, heat flows rapidly as compared to insulators
- × such as wood or rubber.

BATE OF FLOW OF HEAT

* "The amount of heat that flows in unit time is called the rate of flow of heat".

×Mathematically:Q/t

DERIVATION OF THERMAL CONDUCTIVITY

- * Consider a solid block. One of its two opposite faces each of
- cross-sectional area A is heated to a temperature T1 Heat Q flows
- along its length L to opposite face at temperature T2 in t seconds.
- × Thus
- Rate of flow of heat = Q/t (1)

FACTORS EFFECTING RATE OF FLOW OF HEAT * It is observed that the rate at which heat flows through a solid object depends upon various factors.

xi. Cross-Sectional Area of the Solid:

xii. Length of the Solid:
xiii. Temperature Difference between Ends:

I. CROSS-SECTIONAL AREA OF THE SOLID:

- Larger cross-sectional area A of a solid contains larger number of molecules and free
- electrons on each layer parallel to its cross-sectional area and hence greater will be the rate of flow of
- × heat through the solid. Thus
- × ×Q/t ∝ A

II. LENGTH OF THE SOLID:

- Larger is the length between the hot and cold ends of the solid,
- * more time it will take to conduct heat to the colder end and smaller will
- × be the rate of flow of heat. Thus
- $\times Q/t \propto 1/L$

III. TEMPERATURE DIFFERENCE BETWEEN ENDS ×Greater is the temperature difference T1- T2 between hot and cold faces of the solid, greater × will be the rate of flow of heat. Material having Thus thermal conductivity k Area A $\times Q/t \propto T1-T2$ 0 T.

 $T_2 > T_2$

COMBINING THE 3 FACTORS : $\times Q/t \propto A$ (1) $\times Q/t \propto 1/L$ (2) $\times Q/t \propto T1 - T2$ (3) **×**Combining the above factors, we get $\times Q/t \propto A (T1-T2)/L$ $\times Q/t = kA(T1-T2)/L$(4)

\times Q/t= kA(T1-T2)/L

- Here k is the proportionality constant called thermal conductivity of the solid.
- **x** Its value depends:
- On the nature of the substance and is different for different materials.

DEFINITION OF THERMAL CONDUCTIVITY: Q/t = kA(T1-T2)/L $k = Q/t \times L/A(T1-T2)$

THERMAL CONDUCTIVITY:

Thermal conductivity of a substance can be defined as:

"The rate of flow of heat across the opposite faces of a meter cube of a substance

maintained at a temperature difference of one Kelvin is called the thermal conductivity of that

substance".

EXAMPLES

- Thermal conductivity of some common substances are given below:
- × Wood :0.08 W/m K × Iron : 85 W/m K
- x Rubber : 0.2W/m K
 x Copper 400W/m K

Numerical problem : The concrete roof of a house of thickness 0.2 m has an area of 200m². The temperature inside the house is 288K and outside is 308K. Find the rate at which thermal energy will be conducted through the roof.

The value of k for concrete is 0.65W/m K.

Given :

```
Thickness = 0.2m
```

Out side temperature = T1=308K

Inside temperature = T2 = 288K

 $Area = A = 200m^2$

Value of k = 0.65 W/m K.

To find

Rate of flow of heat = Q/t = ?

SOLUTION $\times Q/t = K A (T1 - T2)/L$ **×**Putting the values: ×Q/t =0.65 x 200(308 -288)/0.2 $xQ/t = (0.65 \times 200 \times 20) / 0.2$ **x**Q/t = J/s

PLENARY

- The rate of flow of heat is same for all the objects .
 T/F
- What are the factors on which rate of flow of heat depend?
- Rate of flow of heat isproportional to the temperature. (directly /inversely)
- The symbol of thermal conductivity is
- The formula for thermal conductivity is
- k = Q/t x L/A (T1 T2) T/F
- Heat flowsin metals . (rapidly /slowly).

HOME WORK Chapter:9 Transfer of heat Page no: 208 Solve Numerical 9.2 in note book.

xAllah Hafiz