

Pakistan School Kingdom of Bahrain

Grade :9th Subject: Chemistry

Welcome to E-Learning

Imaan Boosters

Rabbi zidnī 'ilmā

رَبِّ زِدْنِي عِلْمًا


O my Lord! Advance me in Knowledge

[Qur'an, 20:114]

#seekingknowledge

00

Virtual Classroom Rules

Select a quiet place to study.

Be on time.

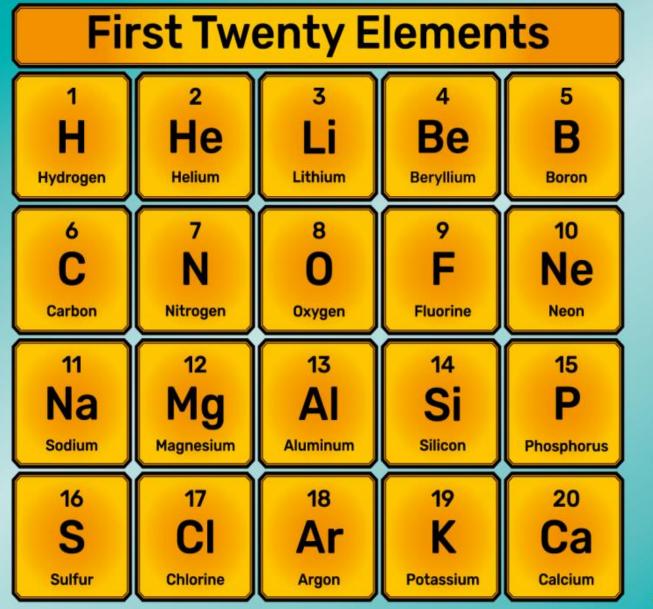
Come to class prepared in every way to learn and participate.

Virtual Classroom Rules

Be respectful.

Listen to & follow directions.

Turn off your video before joining the class.


I hope you will follow all the above mentioned rules to make your dear teacher happy.

<u>REVISION</u>

CHEMICAL CALCULATIONS

Lesson Objectives:

- By the end of this lesson, students will be able to:
- Differentiate between Empirical formula & Molecular formula.
- Distinguish between Atom & Ion.
- Solve problems involving Mole-Particles Calculation.

sciencenotes.org

Element name	Atomic number	Atomic mass	Element name	Atomic number	Atomic mass
Hydrogen	1	1	Sodium	11	23
Helium	2	4	Magnesium	12	24
Lithium	3	7	Aluminium	13	27
Beryllium	4	9	Silicon	14	28
Boron	5	11	Phosphorus	15	31
Carbon	6	12	Sulphur	16	32
Nitrogen	7	14	Chlorine	17	35.5
Oxygen	8	16	Argon	18	40
Fluorine	9	19	Potassium	19	39
Neon	10	20	Calcium	20	40

Empirical formula

Molecular formula

Empirical Formula

- The empirical formula of a compound is the chemical formula that gives the simplest whole number ratio of atoms of each element.
- A formula which represent the simplest whole number ratio of atoms in a compound.
- Example: CH₂O and CH are empirical formula of glucose & benzene respectively.

Molecular Formula

- A molecular formula gives the actual whole number ratio of atoms of each element present in a compound.
- A formula which represent the actual number of atoms of elements in a compound.
- Example: C₆H₁₂O₆ and C₆H₆ are molecular formula of glucose and benzene respectively.

		北市委派出社会计委派
Name of compound	Empirical formula	Molecular formula
Hydrogen peroxide	HO	H ₂ O ₂
Water	н ₂ о	H ₂ O
Glucose	CH ₂ O	C ₆ H ₁₂ O ₆
Oxalic acid	HCO ₂	H ₂ C ₂ O ₄
Ethanol	с ₂ н ₆ о	с ₂ н ₆ о
Ethane	CH ₃	C ₂ H ₆
Ethylene	CH ₂	C ₂ H ₄
Caffeine	C ₄ H ₅ N ₂ O	C ₈ H ₁₀ N ₄ O ₂

Write empirical and molecular formula of the following:

Number of the second strength on the Strength of the second strengt	and the second se
Substance	Molecular Formula
Benzene	C ₆ H ₆
Acetylene	C ₂ H ₂
Glucose	C ₆ H ₁₂ O ₆
Water	H ₂ O

Calculate Formula Mass:

Self-Assessment Exercise:1.4

- Q:Potassium Chloride (KClO₃) is used commonly for the laboratory preparation of oxygen gas. Calculate its formula mass:
- Solution: (KCIO₃)
 =(39)+(35.5)+3(16)
 =39+35.5+48
 =122.5 amu
 Result:

Formula mass of Potassium chloride =122.5 amu

2) When baking soda, (NaHCO₃) is heated carbon dioxide is released, which is responsible for the rising of cookies and bread, Determine the formula mass of baking soda.

• <u>Solution</u>:

(NaHCO₃) =(23)+(1)+(12)+3(16) =23+1+12+48 =84 amu Result:

Formula mass of Baking Soda =84 amu

3) Following compounds are used as fertilizers. Determine their formula masses. (i) Urea (NH₂)₂CO (ii) Ammonium Nitrate , NH₄NO₃

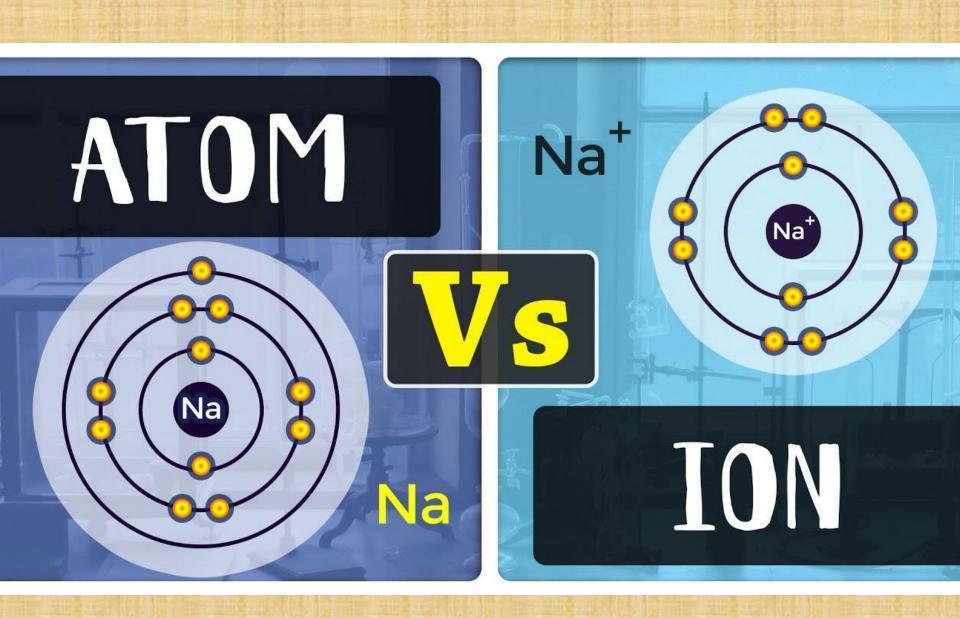
Solution:

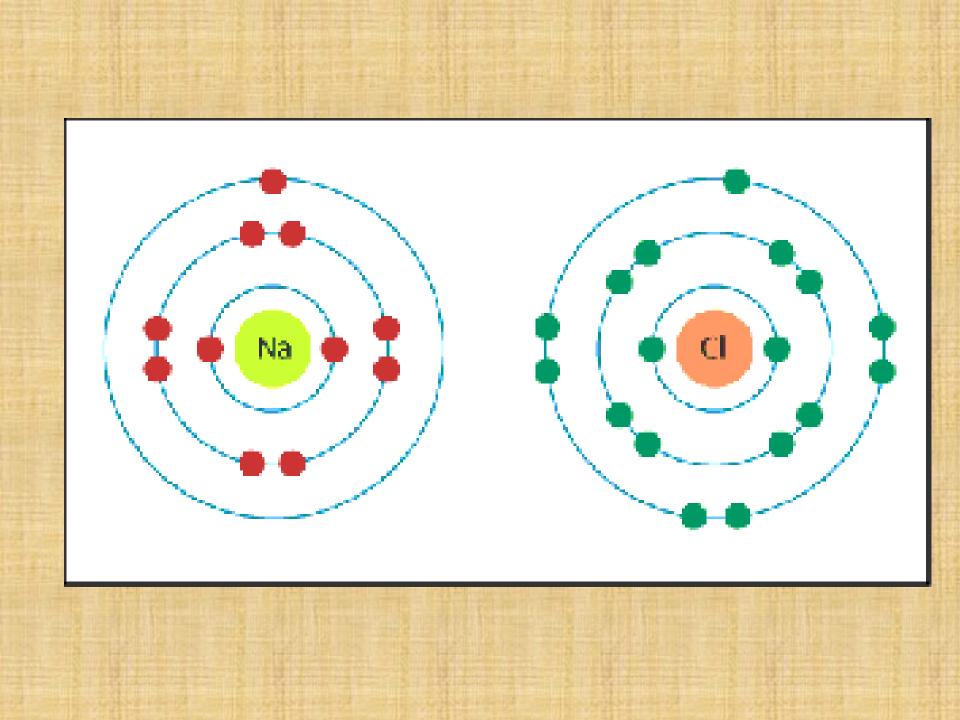
(i) Urea (NH₂)₂CO

- ≻(NH₂)₂CO

- 60 amu

Result:

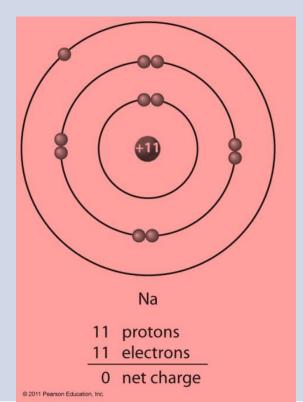

Formula mass of Urea = 60 amu


(ii) Ammonium Nitrate , NH₄NO₃

 $> NH_4NO_3$

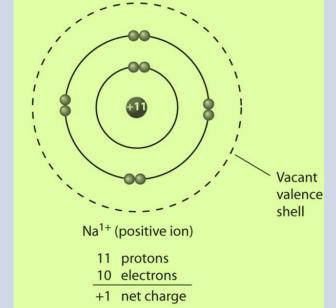
= 2(14) + 4(1) + (12) + (16) = (14) + 4(1) + (14) + 3(16)= 28 + 4 + 12 + 16 = 14 + 4 + 14 + 48= 80 amu **Result:**

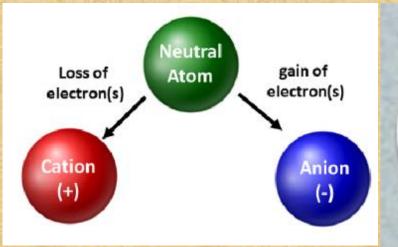
> Formula mass of Ammonium nitrate = 80 amu



Atom and Ion

Atom


Atom is the smallest particle of an element that cannot exist in free state .It is electrically neutral.



Ion is a charged species formed from an atom or chemically bonded groups of atoms by adding or removing electrons. Types of ions: There are two types of ions.

lon

1) Cations 2) Anions

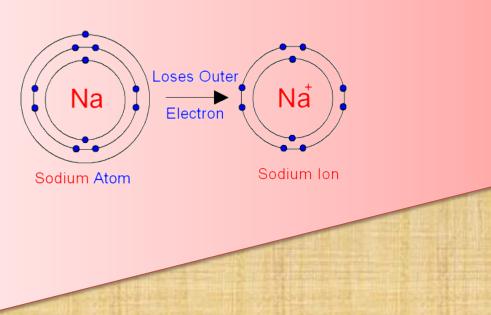
Number of electrons less than number of protons.

Positively charged.

Anion

D,

Vs.

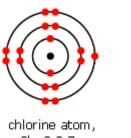

Number of electrons more than number of protons.

Cation

Negatively charged.

Cation

- 1) Cations
- An atom or group of atoms having positive charge on it is called cation. Metal atoms generally lose one or more electrons and form cations.
- Examples
- Na form Na⁺ by losing one electron, Ca forms Ca²⁺ by losing two electrons.



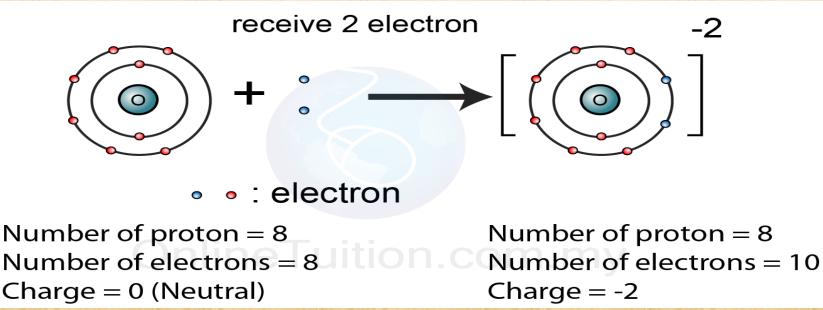
Anion

.An atom or group of atoms having negative charge on it is called anion. Non-metals usually gain one are more electrons and form anions.

Examples

Chlorine atom gains one electron and forms Cl⁻ ion, O atom gains two electrons and form O²⁻ ion.

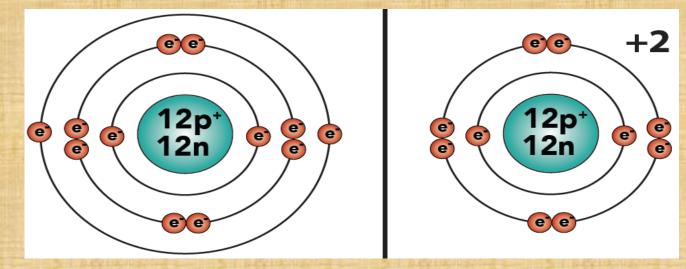
CI 2,8,7

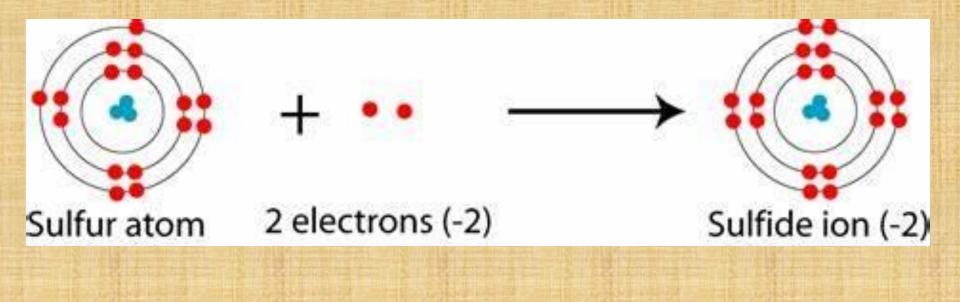

chloride ion, CIT [2,8,8]1 Self-Assessment Exercise:1.5

Explain Why? 1) An oxide ion (O⁻²) has -2 charge. 2) Magnesium ion , (Mg⁺²) has +2 charge. 3) Sulphide ion, (S⁻²) has -2 charge.

1)An oxide ion (O⁻²) has -2 charge.

Oxygen has a nucleus of 8 protons and 8 neutrons.Thus its nucleus has a total charge of +8 Around the nucleus , in the ion are 10 electrons ,with a total charge of -10

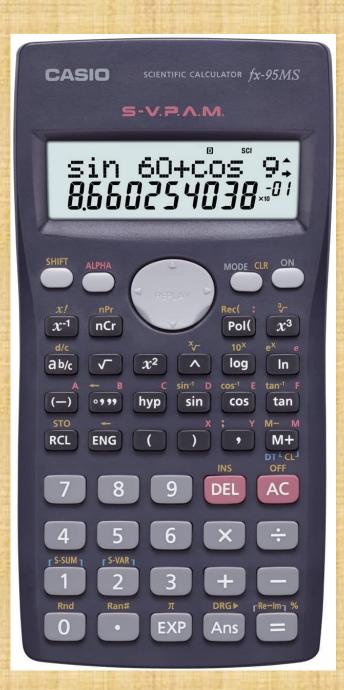

.The charge on the ion is +8 + (-10)= -2 i.e, Oxide ion (O⁻²) {to complete its octet}

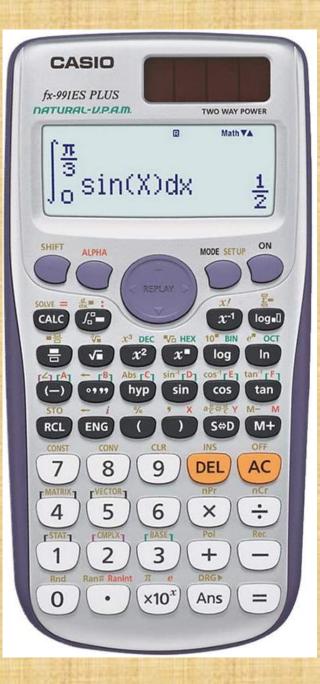

2)Magnesium ion , (Mg⁺²) has +2 charge.

Magnesium has a nucleus of 12 protons and 12 neutrons.Thus its nucleus has a total charge of +12, Around the nucleus , in the ion are 10 electrons , with a total charge of -10.

The charge on the ion is +12 +(-10) =+2 i.e Magnesium ion (Mg⁺²). {to complete its octet}

3) An Sulphide ion (S⁻²) has -2 charge.
Sulphur has a nucleus of 16 protons and 16 neutrons .
Thus its nucleus has a total charge of +16,Around the nucleus , in the ion are 18 electrons ,with a total charge of -18.
.The charge on the ion is +16 + (-18)= -2 i.e, Sulphide ion (S⁻²) {to complete its octet}


HO


A mole is an amount of a substance that contains (6.022×10^{23}) particles of that substance .This experimentally determined number is known as Avogadro's number.

CHEMICAL CALCULATION

Mole – Particles Calculations

1) <u>CALCULATE THE NUMBER OF ATOMS IN</u> <u>THE GIVEN MOLES:</u>

Q: Zn is a silvery metal that is used to galvanize steel to prevent corrosion. How many atoms are there in 1.25 moles of Zn?

DATA	DATA
≻ <u>Given:</u>	≻ <u>Given:</u>
Moles of Zn =1.25moles	Moles of Zn =1.25moles
≻ <u>Required</u> :	➢ <u>Required</u> :
Number of atoms= ?	Number of atoms= ?
≻ <u>Solution:</u>	Solution:
1 mol of Zn contains = 6.022x10 ²³ atoms	Formula:
	Number of atoms =
1.25 moles of Zn contain=	No. of moles x Avogadro number
6.022x10 ²³ x1.25= 7.53 x 10 ²³ Zn atoms	Number of atoms =
	6.022x10 ²³ x 1.25= 7.53 x 10 ²³ Zn atoms
≻ <u>Result:</u>	
	≻ <u>Result:</u>

Number of atoms of Zn= 7.53 x 10²³ atoms

Number of atoms of Zn= 7.53 x 10²³ atoms Q:A thin foil of Aluminum (Al) is used as wrapper in food industries. How many atoms are present in a foil that contains 0.2 moles of Aluminium?

DATA	DATA
≻Given:	≻Given:
Moles of AI = 0.2 moles	Moles of AI = 0.2 moles
≻ <u>Required</u> :	≻Required:
Number of atoms = ?	Number of atoms = ?
≻Solution:	Solution:
1 mol of Al contains = 6.022×10^{23} atoms	Formula:
	Number of atoms =
0.2 moles of Al contain =	No. of moles x Avogadro number
	Number of atoms =
6.022x10 ²³ x 0.2 = 1.2044 x 10 ²³ atoms	6.022X10 ²³ x 0.2= 1.2044 x 10 ²³ atoms
≻Result:	Result:
Number of atoms of AI =	
1.2044 x 10 ²³ atoms	Number of atoms of AI =
	1.2044 x 10 ²³ atoms

Mole – Particles Calculations

2) :CALCULATE THE NUMBER OF MOLECULES IN THE GIVEN MOLES:

Q: 1) Methane (CH₄) is the major component of natural gas. How many molecules are present in 0.5 moles of a pure sample of methane?

DATA	DATA
<pre>> Given: Moles of methane(CH₄) =0.5moles > Required: Number of molecules= ? > Solution: 1 mol of (CH₄) contains = 6.022x10²³ molecules So,</pre>	<pre>> Given: Moles of methane(CH₄) =0.5moles > Required: Number of molecules= ? Solution: Formula: Number of molecules = No. of moles x Avogadro number Number of molecules = $6.022X10^{23} \times 0.5 =$</pre>
3.011 x 10 ²⁸ molecules ≻ <u>Result:</u>	3.011 x 10 ²³ molecules ≻ <u>Result:</u>

Number of molecules of(CH₄) = 3.011 x 10²³ molecules Number of molecules of(CH₄) = 3.011 x 10²³ molecules **Q:** 2) At high temperature hydrogen sulphide (H_2S) given off by a volcano is oxidized by air to sulphur dioxide (SO_2). Sulphur dioxide reacts with water to form acid rain. How many molecules are there in 0.25 moles of SO2?

DATA	DATA
≻ <u>Given:</u>	≻ <u>Given:</u>
Moles of $(SO_2) = 0.25$ moles	Moles of (SO ₂) =0.25moles
➢ <u>Required</u> :	➢ <u>Required</u> :
Number of molecules= ?	Number of molecules= ?
≻Solution:	Solution:
1 mol of (SO ₂). contains =	Formula:
6.022x10 ²³ molecules	Number of molecules =
	No. of moles x Avogadro number
0.25 moles of (SO ₂) contain=	Number of molecules =
6.022X10 ²³ x 0.25=	6.022X10 ²³ x 0.25=
1. 5055 x 10 ²³ molecules	1. 5055 x 10 ²³ molecules
≻ <u>Result:</u>	≻ <u>Result:</u>

Number of molecules of (SO₂) = 1. 5055 x 10²³ molecules Number of molecules of (SO₂) = 1. 5055 x 10²³ molecules Mole – Particles Calculations

3) :CALCULATE THE NUMBER OF MOLES IN THE GIVEN NUMBER OF ATOMS:

Q: Titanium is corrosion resistant metal that is used in rockets, aircrafts and jet engines. Calculate the number of moles of this sample containing (3.011x10²³) Ti-atoms.

DATA	DATA
> <u>Given:</u> Number of atoms=(3.011x10 ²³) Ti-atoms. > <u>Required:</u> Number of moles = ? > <u>Solution:</u> 6.022x10 ²³ Ti atoms = 1 mole of Ti 1 Ti atom = 1 moles of Ti 6.022x10 ²³ Ti atoms = 1 moles of Ti 3.011x10 ²³ Ti atoms = 1	 ≻ <u>Given:</u> Number of atoms=(3.011x10²³) Ti-atoms. ≻ <u>Required</u>: Number of moles = ? <u>Solution:</u> Formula: Number of atoms = No. of moles x Avogadro number 3.011x10²³ =moles x 6.022X10²³
<pre>1 x 3.011x10²³ moles 6.022x10²³ = 0.5 moles of Ti </pre> Result: moles of Ti= 0.5 moles	Moles= <u>3.011x10²³</u> = 0.5 moles of Ti 6.022x10 ²³ ► <u>Result:</u> moles of Ti= 0.5 moles

Mole – Particles Calculations

4) :CALCULATE THE NUMBER OF MOLES IN THE GIVEN NUMBER OF MOLECULES: Q: Formaldehyde is used to preserve dead animals. Its molecular formula is CH_2O .Calculate the number of moles that would contain 3.011×10^{22} molecules of this compound.

DATA	DATA
<pre>> Given: Number of molecules=(3.011x10²²) > Required: Number of moles = ? > Solution: 6.022x10²³ molecules = 1 mole of formaldehyde 1 molecule = 1 moles of CH₂O</pre>	 ≻<u>Given:</u> Number of molecules=(3.011x10²²) ≻<u>Required</u>: Number of moles = ? <u>Solution:</u> Formula: Number of molecules = No. of moles x Avogadro number
6.022X10 ²³ 3.011x10 ²³ molecules = <u>1</u> x 3.011x10 ²² moles 6.022X10 ²³ = 0.05 moles of CH ₂ O	3.011x10 ²² = moles x $6.022x10^{23}$ Moles= <u>3.011x10²²</u> = 0.05 moles of CH ₂ O 6.022X10 ²³
moles of CH ₂ O= 0.05 moles	moles of CH ₂ O =0.05 moles

Plenary

(i)-Decide whether or not each of the following is an example of empirical formula? Al_2Cl_6 , Hg_2Cl_2 , NaCl, C_2H_6O (ii) What is the difference between an atom & ion? **Empirical and molecular** (iii) Define: Cation and Anion formula?

Home Work

Solve :
Self-Assessment Exercise 1.10,(pg no.26)
Review Questions: 8,14,15,

