

Pakistan School Kingdom of Bahrain

Grade :9th Subject: Chemistry

Welcome to E-Learning

Imaan Boosters

Rabbi zidnī 'ilmā

رَبِّ زِدْنِي عِلْمًا

O my Lord! Advance me in Knowledge

[Qur'an, 20:114]

#seekingknowledge

a

Virtual Classroom Rules

Select a quiet place to study.

Be on time.

Come to class prepared in every way to learn and participate.

Virtual Classroom Rules

Be respectful.

Listen to & follow directions.

Turn off your video before joining the class.

I hope you will follow all the above mentioned rules to make your dear teacher happy.

• ENGAGING STARTER

Electronic Configuration

Lesson Objectives:

- By the end of this part of lesson, students will be able to:
- Write the electronic configuration of the first 18 elements in the Periodic Table.
- Generate the electronic configuration for the atom of any element using orbital notation.

sciencenotes.org

Element name	Atomic number	Atomic mass	Element name	Atomic number	Atomic mass
Hydrogen	1	1	Sodium	11	23
Helium	2	4	Magnesium	12	24
Lithium	3	7	Aluminium	13	27
Beryllium	4	9	Silicon	14	28
Boron	5	11	Phosphorus	15	31
Carbon	6	12	Sulphur	16	32
Nitrogen	7	14	Chlorine	17	35.5
Oxygen	8	16	Argon	18	40
Fluorine	9	19	Potassium	19	39
Neon	10	20	Calcium	20	40

Electronic Configuration

Shells
Sub-shells
Atomic Number

ATOMIC STRUCTURE

Sub Atomic Particles

ORBIT/SHELL/ENERGY LEVEL

Shell/Orbit/Energy level:

An orbit is a well defined circular path in which electrons revolves around the nucleus of an atom.

Each shell has a fixed energy ,so each shell is also called energy level.Each shell is described by an "n" value. n can have values 1,2,3......

- When,
- n= 1, it is K shell
- >n =2,it is L shell
- n= 3,it is M shell
 n= 4,it is N shell

As the value of "n" increases the distance of electron from the nucleus and energy of the shell increases.
K<L<M<N......</p>

less energy

- <u>Accommodation of electrons in each shell</u>
- K-Shell (Maximum 2-electrons)
 L-Shell (Maximum 8-electrons)
 M-Shell (Maximum 18-electrons)
 N-Shell (Maximum 32-electrons)

and So on ...

Maximum number of electron calculation formula:

Maximum number of electrons in a shell= 2n²

- **2**n²
- ➤ 2(1)² =2x1=2
- > 2(2)² =2x4=8
- > 2(3)² =2x9=18
- ➢ 2(4)² =2x16=32

{Where n=1,2,3,4.....} For K-shell (n=1) L-shell (n=2) M-shell (n=3) N-shell (n=4)

<u>Sub-Shells/Sub-orbits/Sub-energy level</u>

A sub-orbit is a sub division of electron shells(orbit) separated by electron orbitals. Sub orbit also known as sub shells or sub energy level..

How many sub-shells will be present in each Shell?

• K (n=1) • L (n=2) • M (n=3) ______ s,p,d • N (n=4)

s,p s,p,d,f

S

Electronic Configuration

• Definition:

The arrangement of electrons in sub-shells is called the Electronic configuration. Electrons can filled in various elements by using "Auf Bau" Principle. Auf Bau Principle:

According to this principle ,electrons fill the lowest energy sub-shell that is available first. or electrons are added in orbitals in order of increasing energy values. This means electron will fill first 1s,then 2s, then 2p and so on....

Examples:

Electronic configuration of Lithium:

Electron Configuration Chart

s holds up to 2

p holds up to 6

d holds up to 10

 $1s^{2} 2s^{1}$

Electronic configuration of Carbon:

Electron Configuration Chart

s holds up to 2

p holds up to 6

d holds up to 10

 $1s^2 2s^2 2p^2$

Electronic configuration of Nitrogen:

p holds up to 6

d holds up to 10

s holds up to 2

 $1s^2 2s^2 2p^3$

More electron config.

Electronic configuration of Sodium

Electron Configuration Chart 0

s holds up to 2

p holds up to 6

d holds up to 10

Electronic configuration of Chlorine

Electron Configuration Chart

s holds up to 2

p holds up to 6

d holds up to 10

 $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{5}$

Q: What will be the difference between Electronic Configuration of Cl and Cl⁻ ?

Q: What will be the difference between Electronic Configuration of Na and Na⁺¹?

Plenary

(i) How many sub-shells are there in (ii) Give notation for sub-shells of M shell N? (iii) The electronic configurations shell. listed are in correct. Explain what mistake has been made in each. X=1s²,2s²,2p⁴,3p² Y=1s²,2s¹,2p¹ Z= 1s²,2s²,2p⁵,3s¹ (iv) Which orbital in each of the following pairs is lower in energy? (a) 2s,2p (b) 3p,2p (c) 3s,4s

Home Work

Solve :
 Self-Assessment Exercise
 2.3,(pg no.38)
 Self-Assessment Exercise
 2.4,(pg no.38)
 Review Questions: 2,6,12

