

Pakistan School, Ministry of Education, Kingdom of Bah

Pre Board Examination, June-2021

Paper: Mathematics Class : XII

Time allowed: 25 minutes Max. Marks: 20

Name:-----

2 Version Number 4 8 6

Note: Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 20 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

SECTION - A

(i)	Domain o	f f(x) = r	$\sqrt{x^2-9}$ is	5.					
	A. <i>I</i>	₹-(-3,3)	Β.	R - [-3, 3]	C.	[3,∞)	D.	(−∞	,-3]
		1							
(11)	$\lim_{x\to 0} (x + $	1) ^x is:							
	A. I		В.	е	C.	x	D.	0	
(iii)	What is th	e value of $g($	x) if $f(x)$	$z = \frac{2x}{3x+4}$ and $z = \frac{2x}{3x+4}$	f[g(x)]	= x ?			
	A. $\frac{2+}{4}$	$\frac{3x}{x}$	В.	$\frac{4x}{2+3x}$	C.	$\frac{4x}{2-3x}$	D.	$\frac{2-3x}{4}$	
(iv)	$ \mathrm{lf}f(x)=a$	x + x then wh	ich of the	following optio	ns is co	rect?			
	A. f'	$(0) \cdot f'(1) =$	0 B .	f'(0) < f'(1)	C.	f'(0) > f'	(1) D.	f'(0) =	f'(1)
(v) x =	am^2 , $y = 2a$	$x^2 = 4ay,$	arametrio B.	$x^{2} + y^{2} = a^{2}$	he curv , C.	e: $y^2 = 4ax$,	D. None		
(vi)	$\int \tan x dx = -$								
	A. ln co	$\mathbf{bsx} + \mathbf{c}, \mathbf{B}.$	sec ²	x + c, C.	ln se	$\mathbf{cx} + \mathbf{c}, \mathbf{D}$. None		
(vii)	Which of	the followi	ng repres	sents $\frac{dy}{dx}$ if	$\sin x =$	e ^y ?			
	A	-cot <i>x</i>	Β.	$\tan x$	I	C. – t	an x	D.	cot x
(viii)	What eva	aluates \int_2^{∞}	$\frac{dx}{x^2}$?						
	A. ()	В.	$-\frac{1}{2}$		C. $\frac{1}{2}$		D.	$\frac{1}{24}$
(ix)	For what	value of <i>k</i> ,	$\int_{-3}^{3} (x^{3})$	(5+k)dx=30)?				
	A	-5	В.	$-35\frac{1}{2}$	I	C. 0		D.	5
(x)	Which of tl	ne following	points is	at a distance o	of 15 uni	ts from (0	, 0)?		

A. (1, 15) B. (10, -10) C. ($\sqrt{176}$, 7) D. (7, 176)

(xi)	What is the perpendicular distance of a point (2,3) from y-axis?							
	Α.	2	Β.	$\sqrt{13}$	C.	3	D.	5
(xii)	At w	hat angle line	s 7y = 5	x + 8 and 7	x + 5y = 16	intersect eac	h other?	
	Α.	0	В.	$\frac{\pi}{2}$	C.	$\frac{\pi}{4}$	D.	π
(xiii)	Wha	at is the slope	of a line	perpendicula	ar to $13x + 2$	26y - k = 0?	÷	
	Α.	$-\frac{1}{2}$	В.	-2	C.	$\frac{1}{2}$	D,	2
(xiv)	Whi	ch point in the	e following	g is not a sol	ution of $2x$	-3y < 5?		
	Α.	(-1, -1)	Β.	(2, -2)) _ C.	(2,2)	D.	(3,3)
(xv)	The	centre of a circ	cle $x^2 + y$	$v^2 + 6x - 10^{-10}$	y - 15 = 0 is:			
. ,	Α.	(5, 3)	В.	(5, - 3)	C.	(-3,5)	D.	(3 , 5)
(xvi)	lf e<⁺ A.	1, then the coi Parabola	nic is calle B.	ed: Circle	C.	Hyperbola	D.	Ellipse
(xvii)	The f	ocus of a para	bola x^2 =	= -16 <i>y</i> is:				
	Α.	(-4,0)	В.	(0,-4)	C.	(4,-4)	D.	$(0, \pm 4)$
(xviii)	Whic	h of the follow	ing is an	axis of the p	arabola (y	$(+3)^2 = 12$	$\left(1+\frac{1}{2}\right)$?	
	Α.	y = -3	В.	$x=-\frac{1}{2}$	C.	$x=\frac{1}{2}$	D.	<i>y</i> = 3
(xix)	What i	is the volume o	f a paralle	lepiped deter	mined by \underline{i} +	2j – <u>k</u> , <u>i</u> – 2j	+3k and i	- 7 <i>j</i> - 4 <u>k</u> ?
	A.	20	В.	48	C. 8		D. 38	-
(xx)	(<u>i</u> +2	(<u>j</u>)× <u>k</u> =?						
	Α.	3 <u>i</u> – <u>j</u>	Β.	2 <u>i – j</u>	C.	2+2 <u>k</u>	D. No	one of these

For Examiner's use only

Q. No.1: Total Marks:

20

Marks Obtained:

Pakistan School, Ministry of Education, Kingdom of Bahrain

Pre Board Examination, June-2021

Paper:	Mathematics	Time allowed: 2.35 Hours
Class	: XII	Max. Marks : 80
Note:	Sections 'B' and 'C' comprise pages 1-2 and questions	therein are to be answered on the
	separately provided answer book. Answer any ten questi	ons from section 'B' and attempt
	any five questions from section 'C'. Use supplementa	ry answer sheet i.e., sheet B if
	required. Write your answers neatly and legibly.	

SECTION-B

Q. 2 Attempt any TEN parts. All parts carry equal marks. (10 x 4 = 40)

(i) Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos p \theta}{1 - \cos q \theta}$$
.

(ii) Find the values of m and n so that the given function f is continuous:

$$f(x) = \begin{cases} mx & \text{if } x < 3\\ n & \text{if } x = 3\\ -2x + 9 & \text{if } x > 3 \end{cases}$$

(iii) If $y = \tan(p \operatorname{Tan}^{-1} x)$ then show that $(1 + x^2)y_1 - p(1 + y^2) = 0$

(iv) Find the intervals in which the functions $f(x) = x^2 + 3x + 2$; $x \in (-4, 1)$ is:

increasing or decreasing for the given domain.

- (v) Divide 20 into two parts so that the sum of their squares will be minimum.
- (vi) Evaluate the given integral by parts : $\int x \tan^{-1} x \, dx$
- (vii) Find the area above x-axis, bounded by the curce $y^2 = 3 x$ from x = -1 to x = 2

(viii) Evaluate the indefinite integral : $\int \frac{dx}{x^2+4x+13}$

- (ix) Find an equation of the line through (5, 8) and perpendicular to the joint of A(-15, -8) and B (10,7).
- (x) Find the point which is equidistant from the points A (5, 3), B (-2,2) and C (4, 2).
- (xi) Find the centre and radius of the circle $x^2 + y^2 + 12x 10y = 0$
- (xii) Write equation of tangent to parabola $x^2 = 16y$ at the point whose abscissa is 8.
- (xiii) Write equation of the tangent to the conic $3x^2 = -16y$ at the point whose ordinate is -3.
- (xiv) Find a vector whose magnitude is 4 and is parallel to vector $2\underline{i} 3\underline{j} + 6\underline{k}$.

<u>SECTION – C(Marks: 40)</u>

Note: Attempt any FIVE questions. Each question carries equal marks. $(Marks:5 \times 8=40)$

- Q. 3
- If θ is measured in radians, then prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ If x = sin θ , y = sinm θ , show that $(1 x^2) y_2 xy_1 + m^2 y = 0$ Q4.

Q.5 Show that
$$\int e^{ax} \cos bx \, dx = \frac{1}{\sqrt{a^2 + b^2}} e^{ax} \cos(bx - \tan^{-1}\frac{b}{a}) + c$$

- Show that the lines 4x-3y-8=0, 3x-4y-6=0 and x-y-2=0 are concurrent and the third line Q. 6 bisects the angle formed by the first two lines.
- Graph the feasible region of the system of linear inequalities and find the corner points : Q. 7 $3x + 2y \ge 6$, $x + y \le 4$, $x \ge 0$, $y \ge 0$
- Show that tangent at any point P of a parabola makes equal angles with the line PF and the line through P. Q.8 parallel to the axis of the parabola, F being focus.
- Find a unit vector perpendicular to the plane containing a and b. Also find sine of the angle between them. Q. 9

 $\underline{a} = -\underline{i} - \underline{j} - \underline{k}, \quad \underline{b} = 2\underline{i} - 3\underline{j} + 4\underline{k}.$

BEST OF LUCK